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On the Acoustic Radiation Pressure on Spheres

By Lours V. King, F.R.S., Macdonald Professor of Physics, McGill
University, Montreal

(Received June 14, 1934)

SECTION 1—INTRODUCTION

Although frequent reference is made to acoustic radiation pressure in
treatises and memoirs on sound, there appears to be no systematic
theoretical development of the subject enabling actual pressures on
obstacles of simple geometrical form to be calculated. In the audible
range of acoustic frequencies, it is possible to devise, in a number of
ways, means of measuring pressure amplitudes in sound waves as first-
order effects. At supersonic frequencies, however, these methods are
no longer serviceable. 'When the dimensions of resonators of diaphragms
become comparable with the wave-length, the physical effects which
enable the pressure amplitude to be measured involve intractable diffrac-
tion problems, while the extremely high frequencies and small amplitudes
involved make the employment of stroboscopic methods of observation
extremely difficult.

It has been shown, however, that at supersonic frequencies the acoustic
radiation pressures on spheres and discs become sufficiently large to be
measured easily, at any rate, in liquids. The mean pressure is generally
assumed to be proportional to the energy density in the neighbourhood
of the obstacle, and on this basis relative measurements can be made,
for instance, in the radiation field of a supersonic oscillator.* Such
formule may be obtained without restriction as to wave-length, for
spheres in plane progressive and stationary radiation fields, and the
magnitude of the pressure is found to be of entirely different orders of
magnitude in the two cases.

In stationary radiation fields, the magnitude of the radiation pressure
is found to be sufficiently large to account, in part, for the formation of
the well-known dust-figures observed in resonance tubes filled with gas
and, in particular, to explain the main features of dust striations in
supersonic radiation fields in water observed by Boyle and his co-
workers.

In the present paper the effect of the compressibility of the spheres
and the viscosity of the medium are not taken into account, although

* Boyle and Lehmann, ¢ Can. J. Res.,” vol. 3, p. 491 (1930).
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the analysis may be extended to include these factors. The formule
for rigid spheres in a frictionless medium may, however, be expected
to give correct orders of magnitude, and, in particular, to enable spherical
torsion balances to be designed for optimum sensitivity in the measure-
ment of radiation pressures. Should such instruments prove to be
suitable for sound measurements, the procedure outlined in the present
paper may be extended to obtain more refined formule including the
compressibility of the spheres and viscosity of the medium.

SECTION 2—PRESSURE IN COMPRESSIBLE FLUID

If we denote by o the density of the medium, p the pressure intensity,
(u, v, w) the velocity components, the equations of motion are

Du_ _op Dv__ @ _Dw_ o .
°DrT T *Di T i a O
where
D &
E‘t—a—t“f‘ +V —I-w

It is convenient to introduce « defined by

o=[2, @)
P
in terms of which the equations of motion may be rewritten,
Du_ o Dv_ _ o3 Dw_ _ 9z (3)
Dt ox’ Dt oy’ Dt oz’

When the motion is irrotational, we have, in terms of the velocity

potential ¢,
u s v=—zt =. “)

' VT T
The equations of motion (3) are, then, completely satisfied if
o= [L=d-tu+rtw=d-ip ©)

where, as usual, we denote g2 = u2 - v + w2
We have, in addition, the equation of continuity,

69+—(p)+ (pv)+  (ow) = 6)

Q2
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which may be written
1Dp _
E y Vv qS (7)

For a medium in which dp/dp = ¢?, a constant, the exact differential
equation for ¢ is easily found to be

L2 LR (U - ®

In acoustic problems, we may usually neglect the ratio ¢2/c? in which
circumstances ¢ may be obtained as an appropriate solution of the
wave-equation

2g— L0
Vi =5 =E. ©)

More generally, we consider a medium in which p is a function of p only
(barotropic fluid), and write

p=1(p) (10)

In terms of the condensation s = (p — po)/po, We have the expansion

P =1 (po + 5p0) =f (o) + seof’ (po) + % 5% f" (po) + ..., (11)
so that

while

dp = po (f' + seof” + ...) ds,

pl=rpo (1l —s+s—.).

Thus, .
— i 1,2 dp___ ’ 2 4 A )
p=b == [Lsf +i2Gof =y (1)

o

no constant of integration being required since s and @ vanish together.
Solving (12) for s in terms of & we find,

o 7 2
BT CA 2 ]S
and substituting in (11),
. 1 2 11
P — Po= pof’ {]%— _12(__________Poff, f).;UTg} + ‘%Poﬂff,—z &2+ ...,
or,
P—Do= pom—l—%g—ng-l- (13)

where we have written ¢2 = f” (py)-
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Finally, in terms of ¢ and g2, equation (13) gives the pressure variation
in the medium

8p=p~po=po¢+%%‘—;¢2——%poq2- (14)

The equation (14) is correct to terms of the order ¢%/c? and in these
circumstances it is sufficiently accurate to calculate ¢ from the approxi-
mate wave equation (9). When, however, we proceed to obtain the
pressure variation over the surface of a rigid obstacle, the boundary
conditions require us to refer ¢ to an origin suitably placed with reference
to the boundary. The first order term in (14) integrated over the
boundary will, unless the obstacle is fixed, lead to dynamical equations
of motion, as a result of which the obstacle performs small linear and
angular oscillations. If (£, u, {) are the velocities of translation thus
determined, ¢ is referred to a moving origin and

'_D¢_'_3_<]_5__'@i5 9¢ _ D¢
=57 b3 Moy T 15;— +uk+vn+wl (15

The last three terms give rise to second-order contributions to the
pressure variation over the boundary and are of the same order of
magnitude as the last two terms of (14).*

In the following sections we use (14) and (15) to calculate the mean
resultant pressure on a rigid sphere free to move under the influence
of a prescribed radiation field. The final result is correct to the order
g®/c®. Higher accuracy for acoustic radiation pressure in waves of

. * If we identify (€, », {) with the motion (4, v, w) of a particle of the medium,
¢ = D¢/Dt + g%, so that (14) becomes 8p = pD$/Dt + % (po/c®) ¢* + % 0od®
giving the pressure variation in the medium at a point which partakes of the motion
of the medium. Taking time averages, the first term drops out while the last two
give the average total density of energy in the medium. This is the theorem due
to Langevin, quoted by P. Biquard (‘ Rev. d’Acoust.,” vol. 1, p.93 (1932)). In a
frictionless fluid, the velocity of a point on the boundary is not equal to the velocity
of a particle immediately in contact with it, so that Langevin’s theorem as it stands
is not applicable to the calculation of the mean pressure components on an obstacle.
The equation (14) is, however, employed by Kotani (‘ Proc. Phys. Math. Soc. Japan,’
vol. 15, p. 32 (1933)), who calculated therefrom the mean pressure on a rigidly fixed
circular disc. When the obstacle is free to . move under the influence of the 1nc1dent
sound waves, the pressure contribution arising from a moving origin according to
(15) cannot be omitted.

[Note added in proof, October 13th, 1934.—In a later paper (‘ Rev. d’Acoust.,” vol.
1, p. 315), Biquard continuing his edition of Langevin’s lectures (‘ Collége de France,’
1923), arrives at the fundamental formula (14) suitable for the calculation of acoustic
radiation pressures on rigid or freely suspended rigid obstacles.]


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on April 24, 2014

216 L. V. King

finite amplitude would require a determination of ¢ from an exact equa-
tion of the type (5) adapted to the condition p = f (p), using in addition
an expression for the pressure variation 3p of the form (14) carried to
higher approximations.

SECTION 3—BOUNDARY CONDITIONS

We confine ourselves for the present to dealing with a rigid spherical
obstacle of mass M and mean density p;, so that M = £ wa®p;. If the
incident radiation field possesses radial symmetry with respect to the
sphere, it will perform small oscillations along the z-axis, the dynamical
equation of motion being

I j $p cos 0sin 0 do = — M, (16)
0
where 3p is given by
p = Po‘l‘S — 3p08® + % %’ ‘}2- Qa7

If D¢/D¢ refers to an origin at the centre of the sphere moving with
velocity €, we have, according to (15),

. Dé s 94, #sin 69
4)—']3? Ccosear—}-?; 0 - (18)*

To determine the motion of the sphere, it is sufficiently accurate to
take into account first order terms in 8p, so that on integration with
respect to #, we have the dynamical equation

2 map, j pudy=— M, (19)
-1

where, as usual, we denote p = cos6.
Since the fluid must remain in contact with the sphere, we also have,

— (@¢/or),_, = C cos 6. (20)

* Lamb, ¢ Hydrodynamics,’ §. 92, p. 124 (1932).
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SECTION 4—SOLUTION OF THE WAVE EQUATION

It is well known that the solution of the wave equation, referred to
the centre of the sphere as origin may be expressed in the form

b= 5 (A () + AL, () () S, @

where, as usual, the frequency f of the wave is given by o = 2=nf and
k= wfc. §, is a surface-harmonic of order n, while ¢, («r) and
J.(xr) are spherical wave functions, the latter being appropriate to the
expression for a divergent wave. The following well-known properties
of these functions are used in the sequel :—

W O=T"5) 1,00, 4O=C1e(E a0 @

_ 1 e < B
‘[’"(C)_l.3....(2n+1){1 RIS EE) }
(23)
_1.3..@n—=1Df, 1t t )
(9 = Zan {1 TA—2m 2.4 (0=2)C =) }
(24)

The spherical wave function appropriate to a diverging wave is,

L Q= 60—t O =(-1 % % @s)

* The principal properties of these functions are given in Lamb’s ¢ Hydrodynamics,’
6th ed., 292, p. 503 (1932). See also Bateman, ‘ Partial Differential Equations,’ 651,

p. 384 (1932). Three types of notation are employed, as shown in the following
table :—

Lamb Bateman Bessel-function notation
W O g ()t Ty ()

Fa@= 00 ot S @m0 I )= — G0 e
O it — S G0t HOwy ()

In this paper Lamb’s notation is followed with the exception that ¢, (x) is written
for ¥, (x) as being more easily distinguished from ¢,, (x) in writing and in print.
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the expansion being

AO=EEEL 41O ED @ D@0t DE4D)

go 260 7.4 QP
1.2.3...Qn—1) 1
T3 a6 .. m (zt)n}" (26)

Considerable use is made of the following recurrence formule satisfied
by all the functions ¢, (%), ¢, (9), f, (¥):

Y (O = = Tty (9)
0 (O bueq (§) = 9 () ¢y (O) = 1/02H . @D
Puts (8) Yny (§) = bty (©) buy (8) = Qn + D/T23

From the foregoing we easily see that the appropriate form for the
velocity potential ¢ is, writing « = xa,

— - {Fn (OC) "pn (KI‘) _ Gn (OC) qbn (Kr)} n
4= 3 A E0LE 804660 wyrp,w e

while the incident velocity potential is
b= 5 Ay (@) (@) P, (1), @9

In order to satisfy the boundary conditions (20), we easily find, on
making use of (27),

F, (“) = a2¢n+1 - nq[)ns Gn (OC) = o? q)n+1 — nq’m (n # 1)9 (30)
where, for brevity we have omitted the argument « on the right-hand
side of the above equations. \

Forn =1, the dynamical equation (19) requires that
Fi (o) = ¢y — (1 — po/pd) b1, Gy (o) = oy — (1 — po/p) dr. (31)

On making use of the recurrence equations (27), we easily find that
for all values of n, including n = 1

] F, (0) 4, () — G, (@) ¢, (0) = 1/a2+, (32)
while

Foiy (#) G, (#) — F () Gy (0) = & — n (n+ D}, (1), (33)
In particular
Fi () Gy (¢) — Fo (@) Gy () = 1/a } (34)
Fs (@) Gy (1) — Fy (@) Gy (0) = {8 — 3 (1 — po/e)}/o®
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We now have, on making use of (19), the velocity of the centre of the
sphere,
y __ A1 Lo 1 35
c - OC3 P1 F]_ lG]_ ( )

At the surface of the sphere, the expression for the velocity potential
takes the particularly simple form

— P, () |
= 2 oc"+1 F,(®) — ElLGn () ° (36)

SECTION 5—CALCULATION OF ACOUSTIC RADIATION PRESSURE ON A
SPHERE

In- general the coefficients A, of the incident radiation field (29) will
be complex, so that we write

A, = |Anl et (wita,) . - (3D
It is also convenient to write

F, («) + i G, () = H, (a) ¢,

where
H, (a) = {F,2 () + G,2 ()}, cos <, flgg , sin &, = gn gg (38)
We are thus enabled to write (36) in the form |
¢ = cds ot ZR,P,(p) + sin ot =S, P, (), 39
where
R, — H[A(c[x) cos (:M;I— €n) .S, Hlf(ni) sin (2“-1{— &) (40)

Since ¢ is the velocity potential referred to, the moving centre of the
sphere as origin, it follows from (17), (18), and (39) that the ﬁrst—order
pressure variation 3p, at the surface of the sphere, is glven by

3p; = pock {cos wt & S, P, (n) — sin oz T R,P, (w)}. 41)

Evidently the time average of this expression vanishes, so that 3p,
contributes nothing to the mean acoustic pressure.

If we denote by P, the contribution of the term 4p,¢?/c? in (17) to the
integrated component over the sphere of the z-component of the pressure
variation, we have

T . 2 1.
P, = — ™00 (" 42 gin 6 cos 6 do'— — 7200 [ udu.  @2)
c2 0 . c2 1
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Substituting from (39) we find on taking the time average,
—_— 1 N
Py= —drtpy | (SRR (W + (ES.P (0] wde. (43)
-1

It is easily proved that if m > n,

1 o 2@m+)D _
j_l uP, (0) P, () du—(2n+ 0 T3) for m=n+1

=0 for m >n -+ 1.

As a result of using this theorem, we obtain from (43),

— _ 2 oo n _|_ 1 4 ‘
P4> 2r Pon X (2n T 1) (2n T 3) (Ran+1 + SnSn+1)° ( 4)

Similarly, we denote by P, the contribution of the term — %p,g? in (17)
to the integrated component over the sphere of the z-component of the
pressure variation.

Then we have

T 1
P, = ma?p, j g% cos 0sin 0d0 = ma?p, J- q?u dy. (45)
. 0 —1
At the surface of the sphere we have, according to (20),

odjor = — % cos 6,
so that (44) becomes

P, = ma?p, fl{?? 24— < ¢>} wdp.

The first term of the integral evidently vanishes, and we are left with
vo(od 2
Pq='"90j < >(l—u)udu (46)
—1

On introducing the value of 9¢/op from (39), we find, after taking the
time average, that

Po=dmpo | IR, P, (W) + (58, P ()] (1 — o8) . (47)

It is easily proved that if m >n,

j_ P, () P, () (1 — ) pdyp = 2(’;,5” ++1)1)(§;’ * g if m = n.

=0 if m >n.
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Applying this result to (47), we obtain

5 . &nm+1)(n+2)
P, = 2mp, % (I ESVVTE) RR, 41 + SuSni1)- (48)

Finally, we denote by P, the contribution to the z-component of 3p
arising from the motion of the origin according to (17) and (18). Remem-
bering that for r = a, (2¢/0r) = — ¢ cos 0, we have,

P; = — 2mpga? ¢ r (C cos? 6 + .s._m_e.a_‘l’> sin 6 cos 6 d6.
0 a 00
The first term vanishes, and on integrating the second by parts we find,

Py — 2npoat | 2Py () $de. (49)

-1

On substituting for ¢ from (39), it is evident that only those terms
survive for which n» = 2. There results,

P, = 2rpoal %{Rz cos wt + S, sin wi}. (50)
From (35) and (40), we may write

f— — ok i;l’i (Ry cos of + S, sin wf}. (51)
1

On substituting in (50), and taking the time average, we obtain

-P—g = — 27'590 . %%’)(R]_ Rg + Sl Sz). (52)
1
The total mean pressure is given by
P="P,+P,+P

The sum of the three contributions given by (44), (48), and (52) combine
to give the series

P = —2np, [1_1'5 (RoR;+S,S;) a2+ %(Rﬂ{z‘l‘&sz) {a2 —3 <1— —gf)}

o nt1 .
+ I e Ty (R, Rty + S,uSuty) {02 — n(n + 2)}] . (53)
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SECTION 6—ON THE NUMERICAL COMPUTATION OF COEFFICIENTS

According to (40), we veasily deduce
R”Rﬂ"!']. + S Sn+1
——I_li—fé%;l@{cos (%pty — %) .€OS (Epy — €,)
— i (g — %) - SIDL (g — €.
We find from (38),

F.u F +Gn+1 G, , sin (s, — g, = Gn+1 F Fn+1 G

€08 (Fnn—e) = =HHE T, .1,

We thus have, for purposes of computation,

Ayl - A,
R R, + 8,8, = H‘ 211{ ll a;L

X {COS (“n‘l‘l"" “h) (Fn+1Fn+Gn+1 Gn)+sm (“n‘i'l—an) (FnﬂGn—Gn'i'an)} g
(54)

From (33) and (34),
Fn+1 Gn - G'n"‘l F, = {az —n (n + 2)}/m2n+3 (n # 1)’ (55)

from which we easily derive

’ _ 2
(Foy Fy, 4+ Gty G)2 + 1% :&WL D H,.2H2 (m=1). (56)

In particular, for » = 1, we have from (34)
F.G; — F,G,; = {“2 —-3(1 - Po/Pl)}/Oﬂsa
so that
(FoFy + G2Gp? + {2 — 3 (1 — po/pp)f /et = Hy?H (57

There now remains the problem of computing H,? = F,? + G2 On
making use of (30),

Fn2 + G'n2 = ol (¢n+12 + q}n’l'lz)
— 2a%n (qswi'l ¢'n + ‘Pnﬂ ('IJn) + n? (¢n2 + "I"nz)' (58)

Since — a ¢, = ¢, and — a,, = {’,, we have

- & (¢n+1¢n + q}n“l‘l "pn) = ¢n ¢ln + 4’1; ¢In= Qd_o'c(énz + “pnz s
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Remembering that f, = gl)n — iy, we write ¢,2 4 ¢, = | £, |3 and if we
notice that

LA = L\

we easily find from (58),
G2+ Bt = at | fylt + 2 L forl £,

In terms of Bateman’s function ¢, («), we have*

fo(@) = —ia 1L, (a),
” 2 Cnl2
G2+ Fp= ol 2 AR (59)
Batemant gives for |Z, (x)|? the following finite series,

@ =1 +dn(+1). 5+ 30 -—1)n(n+1)(n+2)-1-+
.(2n ~ 1)

so that

L 1.3

UL (60)
or . 13 2s—NI\(n+9)!1
& (¢)|2 0<2 477 2s >(n-—s)!ﬁ'

By means of (59) it is thus possible to express H,2 = F,2 + G,2? as
polynomials in 1/e®. Remembering that according to (31) the case
n=1is exceptlonal we easﬂy find

Gr=t4d, =t 32 =1+ 548+ 2 e,

and, in consequence, using (59),

He=La+ o )

A el g i)

He = a1 52 gl +gl- y - oD
== Smfi” - {1 S e L

* Footnote to Section 4.
t ¢ Partial Differential Equations,” § 6.51, p. 387.
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With these formula it is found that in plane waves two terms of the
series (53) are accurate to better than 1/10% for « = xa = 2rma/x = 1.

For large values of « exceeding 3 or 4, H,? may be computed from
Bessel function tables* according to the formule

2= b 08 (T ) 200 0Ty = Tty Tt

+ o? (Jn+%}2 + J—n—%z)}’ (n # I)L
~ 62)

R § _ &V (g2 2 — o -7, (
He=in 1 {(1 p) e +7.9+ 20c<1 91> 0_J_,—1J)

+at @R 4I)

SECTION 7—RADIATION PRESSURE ON A SPHERE IN A PLANE PROGRESSIVE
‘WAVE

To express a plane wave in terms of spherical wave functions, we use
an expansion due to Bauer,{ and write for the velocity potential of the
incident radiation field.

¢ = Ae™ = A EO(M + 1) (=" &, (er) . ()" P, (w). (63)

From (37) it follows that
A, = (2n + 1) |A] gt lwt=inm, so that  «, = — in~,

and
Al = @0+ 1) [A].
Referring to (54), we have o«,4; — o, = — 4w, and in consequence,
2
RRy + 8,8 =— BECEDO £ g G G F) 64

HZ2H, 23

If we use (55), we find that the general formula (53) for the mean pressure
gives,
P, AP Ly 2 =301 el

2 [HpH? & H7H; P
2 (m+1 {2 —nm+2p
+ n§2 H,H,.? oAnta :| . (65)

* <« Report Brit. Assoc.,” 1925, p. 221.
T Watson, ‘ Theory of Bessel Functions,” 4.82 (1922) ; also Lamb, °Hydro-
dynamics,” Section 296.
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It is evident from this expression that the radiation pressure on a
sphere in a progressive wave is always positive, i.e., in the direction of
wave propagation. -

Radiation Pressure on Small Spheres (« = xa < 1)

When the circumference of the sphere is very small compared to the
wave-length, we find on using (61) that (63) yields

P— 1+ 2 (1 — pofp)?} -+ termsin o8 and higher powers. (66)
P =2np, |A|?® { 2 L
PolAl (2 + polpr)? '

It is interesting to note that the relative density factor

F(pofe) = ~ 1t Eer, 67

is always finite and positive in the interval 0<C go/py < o0, and has a
minimum at py/p; = 3. Its value is tabulated below :(—

Po/P1 0 1 3 0
F (po/0v) 0-305 0-111 0-075 0-222

The last entry is the value appropriate to a rigid bubble.
The mean total energy-density in the wave is E = }p«?|A[2. We may
write (66) in the form '

S~ 4 (Al F ole) E=4(ZE[ F e B (68)

a2

as the results of observation are usually expressed in this manner.

Radiation pressure on a sphere for which o = xa = 1

. . . 49
We easily find that the third term of (65) is of the order 895 1300

Neglecting this and higher terms, we find

5 1 95 — 48 (po/py) + 36 (po/py)? '

P ~~ TC A 2—— 0 . 69

0 1A 89 6 (oolen) T 2 (ol )

In the case of sound waves in water, we take po/p; = 1. We then
find that 3

P 166 F_0.143E. (70)
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The mean pressure in this case is very much greater than that given by
(68). 1t is found, however, that when such a sphere is made up into a
torsion balance of optimum sensitivity* of 10 seconds period, it requires
waves transmitting 49 erg/cm? (107 decibels), on a 2 cm wave-length in
water to give a deflection 0 = 1/(2000), i.e., 1 mm on a scale at 1 metre.
We conclude that in a progressive plane wave in water the radiation
pressure on a sphere is too small to be observed except when the intensity
exceeds a level of 100 decibels.

SECTION 8—RADIATION PRESSURE ON A SPHERE IN A PLANE STATIONARY
WAVE

If the centre of the sphere be at distance # from a fixed plane of
reference, the incident velocity potential referred to the mean position
of the centre as origin may be written

¢i ju— %A {e—ix(z+h) -+ eix (z+h)}, where A = IA] eiot, (71)

According to (63) we may write
et — 3 (2n 4 1) e, (k). ()" By (1),
and have, on changing the sign of i and adding,
$, = A ;%: @2n 4 1) cos (h + 3nm) 4, (r). () Po(p).  (72)
From (29) and (37) it follows that |A,| = |A| (2r + 1) cos (xh + }nw)

and «, = 0.
Equations (40) give

R, = fq "?‘LH (2n + 1) cos («h + 4nm) cos ¢,
S, = — I%’lm (2n + 1) cos (kh + %nr) sin ¢,

from which it follows that
. 2n—|—1 2n+3 n . (F.,,, Fn+Gn Gn)
R Ry +S,S, = LD CAE) |7 pp (— 1yt sin 2. nEpt Sty

(73)

* Theoretical considerations on the design of torsion balances of optimum sensitivity
using radiation pressures on spheres and circular discs is dealt with in another paper.



http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on April 24, 2014

Acoustic Radiation Pressure on Spheres 227

Finally, the general formula (53) gives for the mean pressure

P = oo |A? sin 2« h[l (FoF1+ GoGy) 2 _ 2w{a2~3(1—90/90}

H,2H,? H;2 H,?
+ 5 (— i B D Eunbe b CenGol s —na + 2| (9

Radiation Pressure on Small Spheres (o = ka < 1)

Itis obvious from (23) and (24) that G, +,G, < F,F,. Using (30), we
find when « < 1 the approximate expansions,

L 60
FONE’ F1N (2+Po/P1), F2~95, F;, ~ o etc.,

and, in general, F, ~1.3.... 2n — 1) (n + 1)/a2"H,
In the present circumstances the first three terms of (74) give

2 . _
P ~mpo|Al2sin 2Kh{1 B lF 35 {« 31(:111_?:0/91)} + 3a(7°‘F If) .} (75)

from which we derive the approximate expression

P = mp,| A2 sin 2ich o d +§_(|_1 ; 7‘;/ o))} + terms in «f and higher terms. (76)
0/ ¥l

It is important to notice that the leading term is of the order (xa)?, so
that the mean radiation pressure on a small sphere due to stationary
waves is of a much greater order of magnitude than that exerted by
progressive waves, the maximum amplitude being the same in both
cases.

According to (71), the velocity potential of the field is

= |A|cos kh cos wt,

so that the particle velocity is € = Ax sin «h cos wt.
The nodes (£ = 0) are at A =0, 4 =/x, = 27/, ... + sn/k, and the
- loops are situated at 2 = 4+ iw/k, 4 in/k, ... £ (s + ) ©/k.

It will readily be seen that for a relatively dense sphere (po/p; << 2+5),
the mean radiation pressure is such as to urge it away from the nodes
towards the loops. On the other hand, a relatively light sphere (po/p, > 2+5)
is urged away from the loops towards the nodes.. The question is
examined in greater detail in the following section.

VOL. CXLVIL—-A. R
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_As in §7, the mean total energy-density in a stationary wave field is
E = Jop® AJ? at all points of the field. We may thus write (76) in the
form,

P 2 (ka)sin 21 F (ofey) . E, a7

Ta?

where, in this case, the relative density factor is

F (pofp) =+ T3 U= eole), )

It is interesting to notice that (77), as regards its linear dependence
on «a follows the early trend of observations by Boyle and Lehmann*
relating to pressures on circular discs of lead placed in the central beam
of a supersonic piezo-electric oscillator, where the radiation field is of
quasi-stationary character, and where the stationary component of the
field is the dominant one.

It is possible to use (76) or (77) as the basis for the design of *“ spherical
torsion balances ” of optimum sensitivity for use in liquid or gaseous
media, the detailed consideration of which must, however, be left to a
future paper.

It is now evident on comparing (66) and (76) that the mean radiation
pressure on a small sphere does not depend on the local specifications
of the field, such as the total mean energy-density. The pressure depends,
in fact, on the nature of the ficld as a whole as related to the mode of
generation of the sound waves. In other than the simple types of field
discussed in this paper, the computation of the components of radiation
pressure is extremely difficult, especially if the sphere is free to oscillate
as the effect of the first-order pressure. Its centre will, in general, move
in a small three-dimensional orbit, with the result that the relative
density factor will be different for the three components of the mean
radiation pressure. The procedure of the present paper might, without
difficulty, be generalized to give the mean radiation pressure in a complex
progressive or stationary plane wave, or a complex wave made up of
progressive and stationary components. The final result is, however, of
no very great interest, as the main features of pressure effects are well
illustrated by the simple problems considered in Sections 7 and 8.

* ¢ Can. J. Res.,” vol. 3, p. 505 (1930).. The writer has, in fact, obtained for the
radiation pressure on small thin circular discs in progressive and stationary plane
waves formulee similar to (66) and (76) except for the relative density factor which
takes different forms. The investigation will be published in a later paper.
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SECTION 9—ON THE MOTION OF SMALL SPHERES IN A PLANE STATIONARY
RADIATION FIELD

If the sphere is free to move under the influence of the mean radiation
pressure, we must add to the velocity potential ¢ the term

é, = has cos 0/r?

appropriate to the mean velocity h and satisfying the boundary condition
— (0¢/0r)c—q = h cos 0. The pressure arising from this mean velocity
when integrated over the sphere is easily found to be

P, = — M'i, where M’ = 2 nadp,. (79

The equation of motion of the sphere under the influence of the mean
radiation pressure is thus seen to be

Mh =P +P,. (80)

On using (76) for the vélue of P in a plane stationary wave and (79)
for the value of P, due to the mean motion, the equation (80) may be
written '

o 2 —
(M + M) s = g |AJ? sin 2k (kap L 30— polod} (g
2+ po/er

If we introduce the new variable 0 given by 2«h = = — 6, equation
(81) takes the form

~ 0 + n2sin 6 = 0, 82)
where ’

2 — 2K4go{1+%(1“"90/91)} ;
A e O

From the last two equations it is easily seen that the position of stable
equilibrium depends on the sign of the relative density factor. We have
the two cases :

(1) for relatively dense spheres (po/p; < 2-5), the position of stable
equilibrium is at 6 = 0, i.e., at 2 = 4+ im/« and, in general, at
h= + (S + %) =/« ie., at the loops of the standing waves.

(2) for relatively light spheres (po/p; > 2-5), the position of stable
equilibriumis at 6 = =, i.e., at A = 0, and in general, at h = +s7/kc,
i.e., at the nodes of the standing waves.

R 2
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It is interesting to notice that the motion as governed by equations
(82) and (83) is independent of the radius of the sphere, and is of the same
nature as the oscillations of a simple pendulum. The time of a complete
oscillation from a position of rest at 2 = A, is easily seen to be

_2m 2
T—-n—.;tK(k), (84)
where K (k) is the complete elliptic integral to modulus k = Cos «h.

In terms of the velocity amplitude of the sound waves, |&| = «|A|,
the wave-length given by « = 2=/A, and the relative density factor
S (polew) given by

— (2 + po/er)? $
I eoed = {55 ) 9

while we have for the time of oscillation of small spheres of all radii such
that «a<1, the convenient formula,

T = Tg-l-f(po/pl). %K (k), where k = cos (2mhy/}). (86)

For relatively dense spheres' (po/pr > 2-5), it is evident from (85)
that the factor f (po/py) is infinite at po/p; = 0, and at py/p, = 2-5.
In the interval it has a minimum at p,/p; = 10/13, for which value
f (eo/py) = 1-67 and the time of oscillation is a minimum. In these
circumstances we have,

T = 1-67 (4/|E) 2K (8) 37

the oscillations in this case being across a loop of the standing wave
system. .

The amplitude factor (2/m) K (k) varies slowly with the distance of
the initial position from the loop as shown in the following table :—

Distance from loop 0 1

o=t

A =N 32 (node)

%K(k) 1 118 137 176w (88)

The formula (87) has a bearing on the well-known phenomena exhibited
when small particles are introduced in a high-frequency stationary wave
field. For instance, in water, a velocity amplitude |¢| = 1-53 cm sec

“at wave-length 3:77 cm corresponds to a very moderate radiation
density of 0-0175 watts/cm? emitted by a piezo-electric oscillator of
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30 cm radius surrounded by an infinite rigid flange and radiating 50
watts.* Near the disc the radiation-field is very nearly of a stationary
character. According to the results of the present section sharply
defined “ dust striations ” are best observed with spherical particles oi
optimum density 1-3, since the time of oscillation across a loop is then
a minimum.
With the above values we find
Tom = 41 X T%K (k) sec. (89)

A reference to (88) tells us that if the particles are initially equally
distributed, almost all of them with the exception of those near the nodes
will be swept towards the nearest loop in a time of the order 4T, i.e.,
in a time interval of 1 or 2 seconds. It is thus probable that radiation
pressure alone is the explanation of the remarkable striations observed
by Boylet and his co-workers in the radiation field of a supersonic piezo-
electric oscillator. The sharpness of definition of the striations is no
doubt due to the fact that the motion is independent of particle size.

When the particles are very small, the influence of viscosity on the
mean motion cannot be ignored, we therefore discuss this aspect of the
problem in greater detail in a later section.

SECTION 10—ON THE INFLUENCE OF RADIATION PRESSURE ON DuST
STRIATIONS IN RESONANCE TUBES

It appears probable to the writer that radiation pressure plays an
important part in the formation of the well-known striated patterns
which light particles in a resonance tube assume when standing waves
are excited therein.f The mean features of the phenomena are described
in all text-books on sound and are familiar to all students of physics.
Recently, the formation of these striations have been studied under
carefully controlled conditions by Andrade.§

* The properties of this type of radiation field have been worked out in detail
by the author in a recent paper, (Can. J. Res., Vol. 11, p.135, August, 1934).

1 Boyle, Lehmann, and Reid, ¢ Trans. Roy. Soc. Canada,’ vol. 19, Section 3, p. 167
(1925). Boyle and Lehmann, Ibid., p. 159. 1t is stated, (p. 161) that particles of
cinder dust settle in nodal planes in a stationary radiation field. According to a
private communication from Dr. Boyle the density of the dust used in these
experiments was : ashes, 0-72 ; lignite, 1.1 ; bituminous coal, 1:2-1:5.  These
densities are considerably less than 2-5, the particles are ¢ relatively light,”” and a
required by theory are driven by acoustic radiation pressure towards the nodes.

1 Rayleigh, ¢ Theory of Sound,” vol. II pp. 46, 50 (1896).

§ ¢ Phil. Trans.,” A, vol. 230, p. 413 (1932).
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Considering the problem in the light of a radiation pressure effect,
we shall suppose that we have to deal with small spherical particles still
sufficiently large that their inertia is the important term in the equation
of motion (80) and that viscosity plays a minor role. In these circum-
stances, the efficacy of radiation pressure in forming striations may be
judged by the time of oscillation given by (86). In air, it is obviously
impossible to adjust the relative density factor to a minimum. The best
that can be done is to choose a material for the particles for which ¢,/p;
is as close as possible to the optimum ratio 0-755 ; that is we have to
use very light particles such as cork spherules, for which g, = 0-24,

Taking p, = 0-0012 as the density of air, py/p; = 5 X 1073 and f(pe/p1)
= 12-5.

In his paper Andrade quotes observed displacement amplitudes of
aerial vibrations of the order |[{| = 1072 cm at a frequency f= 500.
This corresponds to a velocity amplitude [Cl = 31-4 cm/sec at a wave-
length of A = 68-8 cm.

Since po/py < 2-5, the motion is that characteristic of relatively dense
spheres which according to (86) oscillate across the loops or anti-nodes
with a period

T =27-4 % 7% K (k) seconds.

In the light of (88) it is evident that, if the particles are initially equally
distributed, they will with the exception of those near the nodes be
swept towards the nearest loop or anti-node in a time of the order T,
i.e., in 7-13 secs. At the higher frequencies and greater acoustic ampli-
tudes at which the experiment is usually carried out this time of formation
of the striations will be very much less.

Reference to the illustrations in Andrade’s paper show that when
precautions are taken to generate pure waves of moderate amplitudes,
and to minimize the transmission of waves by the walls of the resonance
tube, small particles tend to gather at the loops of the standing waves
in the form of sharply defined antinodal discs. Circulation of air in the
form of vortex patterns undoubtedly play an important part in the
phenomenon, the particles forming the antinodal discs must be held
against gravity by a radial vortex circulation, but their extreme sharpness
of definition is apparently due to the effect of radiation pressure. The
mutual effect of particles in close proximity is such as to further enhance
this sharpness of definition as explained by Konig.*

* Rayleigh, < Theory of Sound,” p. 46.(1896).


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on April 24, 2014

Acoustic Radiation Pressure on Spheres 233

As usually performed, Kundt’s experiment gives rise to prominent
striations at the nodes of the stationary wave system. If the tube walls
are thin, stationary fluxual waves in the tube are set up, and these again
give rise to an associated wave-system in the air. A node in the original
longitudinal sound waves will correspond to a node in the fluxual waves
of the tube which consist of stationary swellings and contractions. The
velocity potential corresponding to the aerial waves thus set up reveals
the existence of longitudinal amplitudes of motion having maximum
values or loops across the nodes close to the wall and diminishing rapidly
with distance from it. In this radiation field, small spherical particles
near the walls will be driven by radiation pressure to the loops of these
secondary transverse waves, which for certain wall constants may attain
high amplitudes of a resonance type. It is thus possible to account for
the formation of the * nodal wall striations > which often make their
appearance.

To explain the inter-nodal fine structure striations frequently observed
at high intensities, it must be remembered that even if the source of the
sound, such as an oscillating diaphragm, has a purely harmonic motion,
the resulting waves of large amplitude have a complex character, the
higher harmonics being present.* These react on the walls giving rise
to fluxual oscillations, which in turn generate secondary stationary sound
waves in which radiation pressure may collect light particles into inter-
nodal striations in the manner already explained.

It is also probable that in a similar way radiation pressure in the
acoustic radiation field associated with vibrating plates may play a part
in driving relatively heavy particles towards the nodes, while extremely
small particles in the motion of which viscosity plays the leading part
are caused to drift towards the loops by the vortex circulation engendered.
A detailed mathematical investigation of the part played by radiation
pressure in the formation of Chladni and Savart’s sand figurest is, how-
ever, beyond the scope of the present paper.

SECTION 11—ON THE INFLUENCE OF RADIATION PRESSURE ON THE
FORMATION OF DUST STRIATIONS IN STATIONARY WAVES

We consider a system of plane stationary waves whose nodal planes
N, fig. 1, are vertical. A small sphere of density p, is released at a

* Lamb, “ Dynamical theory of sound,” Arnolds, p. 180 (1910) ; also King, ‘Phil.
Trans.,” A, vol. 218, p. 221 (1919).
+ Rayleigh, ¢ Theory of Sound,” vol. 1, p. 367 (1894).
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distance x, from the nearest anti-nodal plane L which contains the axis
of z measured vertically downwards, the origin being taken in the hori-
zontal plane in which the particle is released. The effect of viscosity
is to introduce a force px opposing the motion which, introduced in
equation (81) gives

(M + M i+ ph = 27mp, (ka)® f (00/01) sin «h cos «h, (90)
where

Spolen) ={l + 3 (1 — po/e}/(2 + po/pw) 1))

L N L N L N

'F1G. 1 (@)—Sketch of trajectories of small spheres moving under the effect of gravity,
viscosity, and radiation pressure in a system of horizontal plane standing waves.
Fic. 1 (b)—Sketch of relative densities of small particles after falling through a
vertical distance z in the radiation field of fig. 1 (¢). The initial density distribu-
tion over the plane z = 0 is constant.

The position of the sphere is defined by the distance 4 measured from
left to right from an arbitrary plane of reference. If we are dealing with
relatively dense spheres (po/p; > 25), the motion will take place towards
the nearest loop. In terms of the co-ordinate x of fig. 1 (@) measured
from right to left from the axis of z situated in the plane of loops, we write

h = ¥nt/ic — x, and (91) becomes
M + M) ¥ + pi = — 2mp, |A[2 (xa)® f (po/ew) sin xx cos kx, (92)
while the equation of motion under the effect of gravity is
M + M) Z + pZz = 4ma® (o1 — p0) &- (93)

When the particles are sufficiently small, the effect of viscosity pre-
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dominates, and we may neglect the acceleration terms in (92) and (93).
In these circumstances the integrals of the equations of motion are

£ log TR0 — oy |A[*(ka)* £ (eafpn) 1, and pz = $ma* (o1~ o0) g5, (94)

S0 that on ehmmatmg t, the equation of the trajectory is, on using (90),

tan kx = tan kx, e~ ", 95)

where _|A]2x* (5 — 2 polpd) - polea 9
P = g @ T oo U — poled” ©9)

It is interesting to note that the trajectory is independent of particle
radius and viscosity so that all trajectories from the same 1n1t1a1 position
are identical.

We now suppose the particles to be initially equally distributed in the
plane z = 0, so that the number between x, and x, + dx, is ndx, 1,
being constant. Then if at depth z the number between x and x -+ dx
is ndx, we must obviously have

ndx = ny dx,. 7

We accordingly find from (95) that the dens1ty distribution at depth z
is given by

)

~ Cosh Bz — cos 2«x sinh Bz’ .(98)

Two such distribution curves are sketched in fig. 1 (b). For relatively

dense particles the density distribution » has minima nge—#* at the nodes
and maxima nye®* at the loops.

Numerical Examples

(i) Take po/py =05, A =3-77 cm, |é| = |A| = 1-53 cm/sec. As
in Section 9, IEI is the velocity amplitude of the approximately stationary
field near the disc of a piezo-electric oscillator emitting 0-0175 watts/cm?.
Supposing the particles to fall through 30 cm, we easily find from (96)
that Bz = 0-159, so that relative densities of the particles at this depth
at the loops and nodes is ef*: e=# = 1-17 : 0-85, which is just detectable.

(ii) Boyle’s experiments were carried out at f= 570,000 for which
A = 0-258 cm. For the same velocity amplitude [&| = 1-53 cm/sec
corresponding to the same radiation density as in the previous example,
we find for

z=10cm, Bz=11-1,and e’ : e7 P =6 X 10¢ : 1-7 X 1074,
while for z = 5 cm, Bz = 5-6, and ef* : e=#* = 257 : 0-0039.
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At these extremely high frequencies it is evident that radiation pressure
is able to produce very sharp striations in the pattern of small relatively
dense particles allowed to fall through moderate distances. A large
variety of these patterns have been observed by Boyle, Lehmann, and
Reid, to whose paper the reader is referred for experimental details.

It is worthy of notice that if a count or microphotometric record of
particle density be made in a plane stationary wave field resulting from
an initially uniform distribution allowed to fall under gravity through a
distance z, Bz may be roughly evaluated from (98). If the wave-length
and density of the particles are known, equation (96) allows the velocity
amplitude |£| = « |A| to be evaluated. The same object may be achieved
if it is possible to photograph the trajectory of a single particle.

We may notice that relatively light spherules (po/p; > 2-5), such as
air bubbles, tend to move towards the nodal planes. Observations on
the motion of such particles do not appear to have been published, and
their investigation would be of great interest.*

If we start with an initially uniform distribution of Nj particles per
unit volume, the final distribution N per unit area at depth z is easily
found to be,

N — j dx dz — N, tan™* (e tan kx) — Kx (99)
dx, B sin kx cos kx

At the loops, (kx = 0), Ny, = (N,/p) (e** — 1), while at the nodes
Ny =(Ny/8) (1 —e*), and Ni, : Ny =1:e7#. The “contrast” of
particle density at the loops and nodes is thus less accentuated than
when the particles are initially uniformly distributed in a plane. In
the numerical example (i) above, Ny, : Ny = 1 : 0-85, while in example
(i) we havefor z =10 cm, N,: Ny =1 :1:7 x 1074, and for z= 5 cm,
N :Ny=1:3-9 x 1073 In the latter case the striations are as sharply
accentuated as could be desired.

SECTION 12—ON THE SUSPENSION OF SMALL SPHERICAL PARTICLES AGAINST
GRAVITY

Of some interest from the experimental point of view is the possibility
of suspending small Spherical particles against gravity in a vertical
column of fluid in which supersonic stationary waves are generated by

* This conclusion is verified by Boyle’s observations. (Boyle, Taylor and Froman,
¢ Trans. Roy. Soc. Canada’, vol. 23, section IIL, p. 189 (1929)). It is distinctly stated
that bubbles collect at the nodes of the stationary waves as required by theory.
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a piezo-electric oscillator. - If we equate P given by (76) to the buoyancy,
we obtain for the velocity amplitude |&| = « |A| the equation

via__ 20g 1 (1 — po/p1) (2 4 polen)
I == sz (po/eD) G — 2 pole) (100)

Numerical Examples

(i) Light particles in air—If we consider small spherules of cork in a
vertical column of air for which g, = 0:24, p, = 0-0012, the necessary
velocity amplitude for equilibrium at a loop is given by |£[> = 51 2g.
Even at supersonic frequencies the velocity amplitude required is much
beyond that experimentally realizable.

(ii) Small particles in water—It is evident that by taking pq/pe~1,
equilibrium is always possible at the loops for nearly buoyant spherules.

If we take po/py = 0+5, A =0-258 cm as in the example (ii) of
Section 11, we find for the minimum velocity amplitude for which
equilibrium is possible at a loop,

€2 = $2g/r, giving |€| = 10 cm/sec,

a value which should be easily attainable in practice.

If, in the same circumstances, we take p,/p, very large, the correspond-
ing minimum velocity amplitude for which small rigid bubbles can be
held in equilibrium at a node is |£2 = Ag/n, giving |£] = 9 cm/sec,
also realizable experimentally.

These results are of interest in connection with experiments of Biquard *
in which the velocity amplitude of stationary waves shows a marked
exponential decrease with distance from the piezo-electric oscillator not
accounted for by the usual theory of viscosity. The actual measurement
of radiation pressure on a small sphere by means of a sensitive balance
might supplement Biquard’s observations which were made by an optical
method. Computations of the type made in the present section indicate
that radiation pressures may be easily measurable in this manner. For
high precision the exact formula (74) should be employed, corrected
for the compressibility of the sphere and the effect of viscosity on the
scattered wave. A consideration of these points must, however, be left
to a future investigation.

* <C. R. Acad. Sci. Paris,” vol. 197, pp. 309-311 (1933).
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SECTION 13—SuUMMARY AND CONCLUSIONS

1. The pressure variation in a compressible medium in which the
pressure is any function of the density is given by

P"Po‘]s‘l“‘l‘ ¢2—2~90q @

The velocity potential ¢ is the solution of the wave equation with
appropriate boundary conditions. The differentiation with respect to
the time implied in ¢ refers to an origin at rest. If D ¢/Dt refers to an
origin having components of velocity (€, , 9),

¢ = D¢/Dt + uk + vy + wi, (ii)

where, as usual (u, v, w) = — grad ¢, are the velocity components
referred to these axes.

2. To second-order terms, the time average of the acoustlc radiation
pressure on a sphere is given by

P="P, +P, 4P, (ii)

where P, and P, are contributed by the second and third terms of (i),

and I—’; is contributed by the last three terms of (ii) arising from the
motion of the origin at the centre of the spherical obstacle which performs
small oscillations under the influence of the first-order radiation pressure.
3. In radially symmetrical radiation fields for which the velocity
potential can be expanded as a series of spherical wave functions in the
form,
b = nZOAn% (). () Py (), (iv)
a general expression is obtained for the radiation pressure including the
three terms of equation (iii).
4. In a plane progressive wave for which ¢, = Ae~#** the radiation

pressure P is always positive. For spheres whose circumference is small
compared to the wave-length

2y~ 4 (<) F (pofop) E )

where E is the mean total energy-density in the medium and F (p,/py)
is the relative density factor

F (pofos) = 1 Jr(zrf ;/:5491)2. (vi)
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5. Inplane stationary waves for which ¢, = A cos « (z + k), the radiation

pressure P is periodic, depending on the position of the centre of the
sphere with respect to the planes of loops and nodes. For small spheres

_IZ_ = 2 (xa) sin 2«h F (po/p) E (vii)

where F (p,/0,) is the relative density factor

F (pofe) = -4~ eole0), (v

It is important to note that in this case the radiation pressure in a
stationary wave is of a much higher order of magnitude than in a
progressive wave.

6. In general, the radiation pressure on a small sphere does not
depend on the local specifications of the field, but on the nature of the
field as a whole as related to the mode of generation of the sound waves.

7. The motion of a small sphere in a stationary plane radiation field
is discussed in the light of equation (vii) above. When its mass is
sufficiently great so that viscous resistance is negligible, the equations of
motion are similar to that of a simple pendulum, oscillations taking place
across the loops for relatively dense spheres (pq/py < 2-5), and across
loops for relatively light spheres (po/p; > 2+5). The “ time of formation ”’
of striations is of the order 1T, where T is the time of a complete oscilla-
tion, and is independent of the radius of the spherical particles.

For small particles in water, T is a minimum for the density ratio
p1/po = 1-3. In a supersonic radiation field of moderate intensity,
3T i is of the order of 1 second.

For particles of cork-dust in stationary air-waves having a velocrcy
amplitude of 31-4 cm/sec at a frequency of 500, 4T is of the order
of 7 seconds.

It appears probable that radiation pressure plays an important part
in the formation of the familiar *“ dust striations > observed in resonance
tubes.

8. When the particles are extremely small, so that the motion is
principally controlled by viscosity, the trajectories of spherules falling
vertically in a stationary radiation field having vertical nodal planes
are obtained, and shown to be independent of the radius. If the particles
are initially equally distributed over a horizontal plane, the density
distribution after falling a depth z is determined. For relatively dense
particles the density distribution has minima nge #* at the nodes and
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maxima nye® at the loops, where 8 depends on the amplitude, wave-
length, and the relative density, but is independent of the radius. In a
supersonic stationary radiation field for which the velocity amplitude is
1-53 cm/sec at 570,000 cycles, the ratio of maximum to minimum density
of the particle after falling through 5 cm is 257-2 : 0-0039, thus account-
ing for the very sharp striations observed by Boyle, Lehmann, and Reid.

9. The suspension of small particles and bubbles against gravify in a
vertical stationary radiation field is discussed.

10. The results of the present investigation may be used in the design
of torsion balances of optimum sensitivity for the measurement of
amplitudes in stationary supersonic radiation fields.

The Energies of Alpha, Beta, and Gamma Rays

By H. A. WiLson, F.R.S., Rice Institute, Houston, Texas
(Received June 25, 1934)

This paper contains a continuation of the discussion of the energies
of alpha, beta, and gamma rays on the theory previously suggested by
the writer.* According to this theory the energies of beta and gamma
rays are equal to ng + XN, E, where ¢ =3:85,n=0,1,2, 3...... R
E,, denotes an electronic energy level and N,, =0, 1,2,3........ The
unit 105 electron volts will be used throughout.

We shoyld expect elements with the same atomic number to give rays
of equal energies. The chance of the emission of a ray with any given
possible energy must depend on the nucleus as well as on the electronic
system so that the relative intensities of the rays from different elements,
having the same atomic number, may not be the same. The different
elements may emit nuclear gamma rays with different values of the
integer n and with different intervals between the emissions.

The three elements radium B, thorium B, and actinium B have the
same atomic number 82 so we should expect to find beta and gamma
rays of the same energies from these elements. The beta rays from
actinium (B -+ C) and those from thorium B and its products have
‘been observed, but there is some doubt as to which of the observed rays

* ¢ Proc. Roy. Soc.,” A, vol. 144, p. 280 (1934), vol. 145, p. 447 (1934).
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